Base-promoted Eliminations from Menthyl Arylsulphonates in Dimethyl Sulphoxide: A Correction

By CARL H. SNYDER*, and HSIEN-HSIN CHANG

(Department of Chemistry, University of Miami, Coral Gables, Florida 33124)

THE observed tendency toward anti-elimination in highly dissociating solvents^{1,2} and the effects of steric and torsional requirements on the mode of elimination^{2,3} have led to a re-examination of base-promoted elimination from (-)menthyl benzenesulphonate in dimethyl sulphoxide. Reaction of this ester with potassium t-butoxide at $20-25^{\circ}$ has been reported to give nearly equal amounts of Δ^2 - and Δ^3 -menthenes.⁴ Exclusive formation of 3-methylcyclohexene from trans-2-methylcyclohexyl tosylate under similar conditions in another study⁵ seems to rule out an E1cb mechanism. Thus formation of Δ^3 -menthene would require a syn-elimination, which was in fact postulated for eliminations from other substrates in dimethyl sulphoxide.⁶

Failure of trans-2-methylcyclohexyl tosylate to give any 1-methylcyclohexene and growing recognition of the importance of solvent and structural requirements have led to a re-examination of eliminations from the (-)-menthyl system. In the original study a total yield of 50% menthenes was obtained on distillation, but the isomeric ratio was determined indirectly, by racemization. A more rigorous examination, with direct analysis for the isomeric menthenes by g.l.c., has been carried out. A series of p-substituted (-)-menthyl benzenesulphonates was treated with potassium t-butoxide in dimethyl sulphoxide at 20-25° for 30 min. After addition of n-heptane the mixture was poured into cold water, separated, and the aqueous phase extracted with additional heptane. Combined organic phases were analyzed with a 12-m. column of 25% Carbowax 20M on 60/80 mesh Chromosorb P. At a column temperature of 160° authentic samples of Δ^2 - and Δ^3 -menthenes were clearly resolved.

In this study (-)-menthyl benzenesulphonate gave 62% Δ^2 -menthene and no trace of Δ^3 -menthene. Exclusive formation of the Δ^2 -isomer was observed also with *para*-Me-, Br-, and Cl-substituents. The p-nitrobenzenesulphonate gave no menthenes with either potassium t-butoxide or sodium methoxide. While the source of error in the racemization has not been identified, it is clear that only Hofmann elimination occurs, presumably by an *anti*-route.

(Received, November 15th, 1968; Com. 1556.)

¹ M. Pánková, J. Závada, and J. Sicher, *Chem. Comm.*, 1968, 1142; D. H. Froemsdorf, W. Dowd, and W. A. Gifford, *ibid.*, p. 449. ² J. Závada, M. Pánková, and J. Sicher, *Chem. Comm.*, 1968, p. 1145.

- ⁹ J. L. Coke and M. P. Cooke, jun., Tetrahedron Letters, 1968, 2253.
 ⁴ C. H. Snyder and A. R. Soto, J. Org. Chem., 1964, 29, 742.
 ⁵ D. H. Froemsdorf and M. E. McCain, J. Amer. Chem. Soc., 1965, 87, 3983.
 ⁶ C. H. Snyder and A. R. Soto, J. Org. Chem., 1965, 30, 673; Tetrahedron Letters, 1965, 3261.